Magnetohydrodynamic damping of oscillations in low-Prandtl-number convection
نویسندگان
چکیده
منابع مشابه
The Anisotropy of Low Prandtl Number Turbulent Convection
A model for homogeneous anisotropic incompressible turbulence is proposed. The model generalizes the GISS model of homogeneous isotropic turbulence; the generalization involves the solution of the GISS equations along a set of integration paths in wavenumber (k-) space. In order to make the problem tractable, these integration paths (“cascade lines”) must be chosen in such a way that the behavi...
متن کاملBifurcation of Infinite Prandtl Number Rotating Convection
We consider infinite Prandtl number convection with rotation which is the basic model in geophysical fluid dynamics. For the rotation free case, the rigorous analysis has been provided by Park [15, 16, 17] under various boundary conditions. By thoroughly investigating We prove in this paper that the solutions bifurcate from the trivial solution u = 0 to an attractor ΣR which consists of only on...
متن کاملOnset of zero Prandtl number convection
The transition to convection in a zero Prandtl number fluid with stress-free and perfectly conducting boundaries differs significantly from finite Prandtl number convection, giving rise to a three-dimensional pattern. Two possible scenarios are described and compared with recent numerical simulations by Thual Ii]. The Prandtl number of a fluid can approach zero in one of two ways either because...
متن کاملDamping of Fast Magnetohydrodynamic Oscillations in Quiescent Filament Threads
High-resolution observations provide evidence of the existence of small-amplitude transverse oscillations in solar filament fine structures. These oscillations are believed to represent fast magnetohydrodynamic (MHD) waves and the disturbances are seen to be damped in short timescales of the order of 1 to 4 periods. We propose that, due to the highly inhomogeneous nature of the filament plasma ...
متن کاملReynolds-number measurements for low-Prandtl-number turbulent convection of large-aspect-ratio samples
We present experimental results for the Reynolds number ReU based on the horizontal mean-flow velocity U and for ReV based on the root-mean-square horizontal fluctuation velocity V for turbulent Rayleigh–Bénard convection in a cylindrical sample of aspect ratio Γ = 10.9 over the Prandtl number range 0.18 6 Pr 6 0.88. The results were derived from space–time cross-correlation functions of shadow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 2005
ISSN: 0022-1120,1469-7645
DOI: 10.1017/s0022112005006762